A First Principles-based Li-Ion Battery Performance and Life Prediction Model Based on Reformulated Model Equations†

NASA Battery Workshop
Huntsville, Alabama
November 17-19, 2009

by

Gerald Halpert¹, Venkat R. Subramanian², Matthew K. Heun¹, Kumar Bugga³, and Kerry T. Nock¹

¹ Global Aerospace Corporation, 711 West Woodbury Road, Suite H, Altadena, CA 91001
² Now at Washington University, 1 Brookings Drive, St. Louis, MO 63130
³ Consultant

† - This work was funded by the Missile Defense Agency Small Business Technology Transfer Program under Contract HQ0006-09-C-7073. Approved for public release; distribution is unlimited. Approved for Public Release: 09-MDA-4976 (19 NOV 09).
Topics

• Overview
• Reformulated Model (RFM)
• Initial Set of RFM Equations
• Proof-of-Concept RFM Equations
• LEO Pulse Cycling Regime
• Summary
Overview

• **Program Objective** - Develop a unique object-oriented Li-Ion battery model for analyzing satellite operations scenarios, Dakota, based on first principles, that describes and predicts the performance of Li-Ion cells and batteries under various operational modes and environments.

• **Why GAC and TTU?** - GAC’s object-oriented computer models of complex engineering systems. TTU’s Li-Ion reformulated model (RFM) expertise and experience.

• **Approach** - Adapt reformulated, first-principle, cell model to an object-oriented cell/battery operations model. Verify model with LEO cycling cell test data.

• **What’s Unique?** - 1. RFM fastest algorithm (as of today in the literature) developed from first-principles cell model. 2. Use of object-oriented code that is highly extensible and platform independent. 3. Engineer-friendly simulation environment. 4. Framework for a comprehensive battery model.
Long-term Goals for Battery Operations Model

- Simulate performance and life of a cell or battery
- Simulate changes during operation, e.g., cell or battery imbalance in series or parallel configurations
- Optimize cell / battery design and configuration
- Assess capability for a cell or battery design to meet a mission requirement
- Manage battery operation for long term success
- Assess new cell / battery technologies
- Design and size power subsystems
- Map and simulate manufacturing processes
Key Dakota Approach and Innovation

- Develop an object-oriented, desktop tool based on electrochemical first-principles, useable by system engineers. (not an esoteric Fortran code with text file configuration parameter lists)
- Incorporate simulation of individual cell charge and discharge characteristics and cycling performance
- Include simulation of orbital battery operations in LEO including thermal and mechanical interactions
- Provide a modular architecture that allows
 - A scalable user interface
 - Easy “what if” playing
 - New physics to be added now and in the future
 - Cell design parameters
 - Battery interactions with wide variety of environments
Battery Modeling Projects

• Phase II STTR with JPL - *SPM Dakota*
 – Single Particle Model (SPM) focused on LEO model development
 – Already incorporated into Dakota engine
 – Much faster than Full Physics Model (FPM)
 – Limited to low rates and nominal temperatures
 – In the prototype model development, we are extending the SPM to higher rates and a wider range of temperatures

• Phase I STTR with TTU - *RFM Dakota*
 – Reformulated Model (RFM) focused on LEO model development
 – Faster than FPM and handles higher rates and a wider range of temperatures like the FPM
 – Higher fidelity at a cost of somewhat slower speed than SPM
 – In Phase I, RFM equations for three Li-Ion chemistries were incorporated into Dakota along with the LEO orbit scenario
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

Project Plans

• Selected the reformulated model (RFM) approach of Dr. Venkat R. Subramanian who was at TTU, now at Wash U.
• The initial objective was to develop a proof-of-concept RFM battery operations tool for a candidate Li-Ion cell chemistry focused initially on LEO Operations
• The RFM equations for two Li-Ion chemistries were incorporated into Dakota along with a simple LEO battery operations scenario
• Validated the RFM Dakota tool results against TTU-generated charge / discharge behavior data
• Simulated three different pulse charge battery operations scenarios
• Compared pulse cycling case with no-pulse operation
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

START

Simplify the solid-phase diffusion equation from one PDE to few DAEs

Convert the model equations to dimensionless form

Choose appropriate polynomial profile solutions for dependent variables

Volume averaging
Galerkin collocation
Closed-form derivation
Intuition based reformulation

Add more terms
Verify with rigorous model

Insufficient accuracy
Sufficient accuracy

Done

~5000 states
<50 states

[V.R. Subramanian+ ESL 2007]
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

Initial Set of RFM Equations

• Two chemistries
 – Doyle-Newman Cell Model (LiMn$_2$O$_4$)
 – TTU / USG Cell Model (LiNi$_{0.8}$Co$_{0.15}$Al$_{0.05}$O$_2$)

• Characteristics of test set of equations
 – Discharge curves and dependent variables (electrolyte concentration, potential, solid-phase potential, solid-phase concentration) at $x = 0$.
 – Fixed current rate
 – Variable: State-of-charge and cutoff potential
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

Doyle-Newman Full-Physics Model

<table>
<thead>
<tr>
<th>Region</th>
<th>Eq. No.</th>
<th>Governing equations</th>
<th>Boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive electrode</td>
<td>1</td>
<td>(\varepsilon_0 \frac{\partial c}{\partial t} = D_{eff} \frac{\partial^2 c}{\partial x^2} + a_p (1-t_s) j_p) initial condition (c</td>
<td>_{t=0} = c_0)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(-\sigma_{eff} \frac{\partial \Phi_1}{\partial x} - \kappa_{eff} \frac{\partial \Phi_2}{\partial x} + 2 \frac{\kappa_{eff} RT}{F} (1-t_s) \frac{\partial \ln c}{\partial x} = I)</td>
<td>(-\kappa_{eff} \left. \frac{\partial \Phi_1}{\partial x} \right</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>(\sigma_{eff} \frac{\partial \Phi_1}{\partial x} = a_p F_j)</td>
<td>(\left. \frac{\partial \Phi_1}{\partial x} \right</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(\frac{d}{dt} c_s^{ave} + \frac{3 j_p}{R_p} = 0) and (\frac{D_{L,p}}{R_p} (c_s^{surf} - c_s^{ave}) = -\frac{j_p}{5})</td>
<td>(c_s^{ave}</td>
</tr>
<tr>
<td>Separator</td>
<td>5</td>
<td>(\varepsilon_s \frac{\partial c}{\partial t} = D_{eff} \frac{\partial^2 c}{\partial x^2})</td>
<td>(-D_{eff} \left. \frac{\partial c}{\partial x} \right</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>(I = -\kappa_{eff} \frac{\partial \Phi_2}{\partial x} + 2 \frac{\kappa_{eff} RT}{F} (1-t_s) \frac{\partial \ln c}{\partial x})</td>
<td>(-\kappa_{eff} \left. \frac{\partial \Phi_2}{\partial x} \right</td>
</tr>
<tr>
<td>Negative electrode</td>
<td>7</td>
<td>(\varepsilon_0 \frac{\partial c}{\partial t} = D_{eff} \frac{\partial^2 c}{\partial x^2} + a_n (1-t_s) j_n) initial condition (c</td>
<td>_{t=0} = c_0)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>(-\sigma_{eff} \frac{\partial \Phi_1}{\partial x} - \kappa_{eff} \frac{\partial \Phi_2}{\partial x} + 2 \frac{\kappa_{eff} RT}{F} (1-t_s) \frac{\partial \ln c}{\partial x} = I)</td>
<td>(-\kappa_{eff} \left. \frac{\partial \Phi_2}{\partial x} \right</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>(\sigma_{eff} \frac{\partial \Phi_1}{\partial x} = a_n F_j)</td>
<td>(-\sigma_{eff} \left. \frac{\partial \Phi_1}{\partial x} \right</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(\frac{d}{dt} c_s^{ave} + \frac{3 j_n}{R_n} = 0) and (\frac{D_{L,n}}{R_n} (c_s^{surf} - c_s^{ave}) = -\frac{j_n}{5})</td>
<td>(c_s^{ave}</td>
</tr>
</tbody>
</table>
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

Doyle-Newman

RFM Equations*

\[
c_g = YPRIME1 = -0.360988287612180473519614325667e0 \times Y11 + \]
\[
0.191473721423663165685371039105e1 \times Y2 + \]
\[
0.146117687123876805835205638937e1 \times Y3 + \]
\[
0.818581995016529393932356313404e0 \times Y4 - \]
\[
0.4407324252204205964432425294418e-1 \times Y12 - \]
\[
0.7196978672843059541344330075150e-2 \times Y13 - \]
\[
0.685083539666203007516357670348e-4 \times Y27 + \]
\[
0.97844959995730070477421151524e-3 \times Y17 + \]
\[
0.276798199212208598538807863935e-2 \times Y16 + \]
\[
0.581291671447654875471851298803e-2 \times Y15 - \]
\[
0.112100335291330779227032034152e-2 \times Y26; \]
\[\]
\[
c_g0 = YPRIME2 = -0.10473424936094342981939099480e3 \times Y11 + \]
\[
0.1046566721295686646012611750174e4 \times Y2 + \]
\[
0.103798289326955751327984326349e4 \times Y3 + \]
\[
0.71867584173894273423982899829e3 \times Y4 - \]
\[
0.5026288862439300239490175953060e2 \times Y12 - \]
\[
0.188679196717988074563774446292e2 \times Y13 - \]
\[
0.893992957759775113797091423114e2 \times Y15 + \]
\[
0.3739794328538790404048243999827e1 \times Y27 - \]
\[
0.12718542057778699829649815127e2 \times Y17 - \]
\[
0.410247122066572230038398906012e2 \times Y16 - \]
\[
0.701132161249252879771610214910e1 \times Y26; \]
\[
\]
* - Two of the shortest equations shown for illustration
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

Doyle-Newman Chemistry

Dakota assumptions:
- Trapezoidal Integrator
- Time step = 0.01 (dimensionless)
- Solver tolerance = 1e-6
- Maximum solver iterations = 1000
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

TTU / USG Chemistry

![Graph showing cell potential over time with two curves representing TTU Fortran and Dakota.]
Proof-of-Concept
RFM Equations

- Doyle-Newman Cell Model (LiMn$_2$O$_4$)
- Charge and discharge capability
- Taper charging
- Include enough variables to enable:
 - Initial validation of Dakota using TTU data
 - Simulating a cell according to an example cell cycling regime
 - Variables include:
 - Variable current rates up to 2C
 - Variable state-of-charge, starting and cutoff potentials
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

Example Cycling Regime Assumptions

- 28 day repeating “monthly” period
- 1400 min “day”
- 14 orbits per day
- 100 min orbit period
- 35 min normal discharge
- 65 min normal charge (4.1 V taper)
- Pulse cycle scenarios
 - Once each day (during the middle of cycle 7 discharge), pulse discharge for 0.5 min at xC, yC, or zC and
 - Once each month pulse discharge for 10 minutes (During cycle 14 discharge on the 14th day) at xC, yC, or zC
Cycling Regime Schematic

All normal orbits
- Charge w/taper 65 min
- Discharge 35 min

7th orbit every day
- Charge w/taper 65 min
- Discharge 34.5 min
- Pulse Discharge 30 s

14th orbit, 28th day
- Charge w/taper 65 min
- Discharge 25 min
- Pulse Discharge 10 min
Li-Ion Battery Model for Satellite Orbit Operations Scenarios

Pulse and No-pulse Comparison: Current Density

Current Den, Day 28, Orbit 14, 10 min Pulse Comparison

- xC Pulse
- yC Pulse
- zC Pulse
- No Pulse

Day 29, Orbit 7, 30 s pulse

Day 28, Orbit 14, 10 min pulse
Pulse and No-pulse Comparison: Cell Potential

Cell Potential, Day 28, Orbit 14, 10 min Pulse Comparison

Day 29, Orbit 7, 30 s pulse
Day 28, Orbit 14, 10 min pulse
Summary

- We have leveraged our extensive modeling and Li-Ion cell and battery expertise to develop a unique and advanced battery operations tool to predict life and performance.
- The initial effort was aimed incorporating test set of 27 RFM equations for Doyle-Newman and TTU / USG chemistries and its results were verified with TTU Fortran/Maple results.
- A proof-of-concept (POC) set of RFM equations for Doyle-Newman chemistry was incorporated into Dakota and its results verified.
- A pulse power cycling regime was simulated for the POC Doyle-Newman chemistry and results compared with no-pulse operation.
- The RFM Dakota tool now can study two chemistries under LEO cycling conditions, i.e. Doyle-Newman and TTU / USG.
- In Phase II we propose to incorporate additional chemistries and a cell thermal model, explore degradation mechanisms, and improve the software flexibility and operability.
Acknowledgement

Global Aerospace Corporation is appreciative of the support of MDA and specifically Dr. Harlan Lewis for his direction.