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ABSTRACT

Global Aerospace Corporation (GAC), in collaboration with 
its research partners, has been developing a state-of-the-art, 
object-oriented, first-principles-based simulation system, 
called Dakota, that can reproduce the actual behavior and 
performance of Li-Ion cells and batteries under a variety of 
operating conditions.

As a desktop modeling and simulation system, Dakota is 
designed to describe and predict performance under various 
operational modes and environments. The Dakota tool is not 
based on empirical cell test data nor particular cell 
chemistries, but instead incorporates and extends simple 
Single Particle Model (SPM) equations and includes user 
defined cell and battery design parameters that enables one to 
simulate complex charge and discharge profiles. Dakota is an 
engineer-friendly, extensible and platform-independent tool. 
The modeling tool has been successfully validated against 
results described in the literature, detailed Fortran SPM and 
full-physics model code results, and experimental cycling test 
data.

Our strategy for the initial development of Dakota has been to 
incorporate, and extend state-of-the-art first-principles Li-Ion 
chemistry and physics equations and to validate their operation 
using available long-duration Low Earth Orbit
(LEO) cycle life test data. When Dakota correctly simulates 
the existing cycle life test data, we have successfully validated 
the first-principle models incorporated into Dakota. Where 
there are differences, we have worked to improve the first-
principles chemistry and physics until it correctly simulates the 
test data. The implication of this strategy is that the Dakota 
tool can be applicable to any Li-Ion cell chemistry and many 
different applications including electric vehicle (EV) batteries.

INTRODUCTION

Li-Ion technology is highly attractive for electric vehicle (EV) 
energy storage; however, this technology is still relatively new 
for automotive drive applications. Because new vehicle 
platforms often require a very significant investment, to

reduce the risk of the use of this technology, battery 
performance and behavior needs be characterized and 
qualified by long, elaborate and expensive life testing. This 
testing can delay the use of the newest, best and safest Li-Ion 
technology on electric vehicles. In addition, it is not practical 
to perform laboratory life tests under all likely drive scenarios 
or operating environments to be encountered by a vehicle 
during its lifetime.

Unlike empirical-based battery models, Dakota is based on an 
advanced and extended first-principle SPM of Li-Ion cells that 
accurately replicates the actual Li-Ion chemistry and physics in 
a virtual environment. The architecture of the software system 
is patterned after the physics of the problem with elements of 
code taking on elements of the physical problem including 
battery, string configuration, cell, electrode, electrolyte, and 
separator software objects. In this fashion, a battery becomes 
an arrangement of cells that interact with each other defining 
the battery’s condition (e. g. voltage and capacity during 
charge or discharge) to change. In addition, Dakota is 
extremely engineer-friendly and is beneficial to a variety of 
people, including vehicle program managers, power systems 
and battery engineers, and battery manufacturing engineers.

This tool can enable EV development programs to predict 
battery life and performance based on extended, expanded and 
validated first-principles models rather than severely limited 
extrapolations of empirical cell test data; data that often fails to 
mimic actual battery usage. In addition, Dakota, used in 
concert with a real-time battery monitoring system, could 
permit the forecast of performance and life of EV batteries to 
be based upon their actual past usage, which makes possible 
real-time replacement decisions by maintenance operators.

In our most recent work, to be reported on here, we summarize 
the results of our effort to extend the SPM to a wider range of 
temperatures and rates and to perform long-duration 
simulations and to compare these results with actual laboratory 
data. In this work, we have improved the SPM; developed a 
way to extended the SPM to higher rates and lower 
temperatures without significant computational cost; developed 
a way to incorporate a thermal model to couple
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with SPM; developed a process for ingesting a new chemistry 
into the Dakota system that includes cell design and parameter 
information and beginning of life cell laboratory 
measurements; developed ways to integrate continuous, 
dynamic, physics-driven modeling with real material properties 
in a flexible computing environment; and developed advanced 
mathematical simulation techniques that will allow us to carry 
out accurate, 10-year, multi-cell (slightly imbalanced) battery 
simulations in less than a few days.

Dakota, for the first time, has the potential of offering battery 
and power system engineers the ability to carry out trade 
studies on the effect of cell design and cell operating 
conditions (rates, temperatures, end of charge voltage limit, 
depth of discharge, etc.) on long-term performance and life. In 
addition, Dakota can assist program managers with 
performance and life assessment of new chemistries that 
otherwise would require expensive and time-consuming life 
testing.

Battery Performance Prediction Tools

Current battery performance prediction tools consist of full 
physics models (FPMs), empirical-based models, and first-
principle-based approximations or reformulations of the full-
physics models.

FPMs usually do not include a comprehensive set of cell 
degradation mechanisms and they require finite element codes 
to run that prohibit long-duration, multi-cell battery life 
simulations due to their lengthy runtimes.

Empirical-based models are the result of fitting of actual 
laboratory cell and battery test data. They can be very fast 
running, however, they are severely limited since they can 
only give accurate predictions when a battery is operated in 
the exact same manner (i.e. rates, cycling protocol, 
temperature) as the tested cell or battery, which is almost 
never the case in real life.

First-principle-based simplified or reformulated models of the 
FPMs, of which Dakota is a unique example, can also be very 
fast, since their simplifications or equation reformulations 
significantly reduce the amount of computations required.

The advantages of Dakota over other simplified or 
reformulated models is a time-integratable, object-oriented 
software system that retains the physical and chemical 
connection to the first-principle models, which facilitates the 
addition and validation of new capabilities including new Li-
Ion chemistries, new degradation mechanisms, and more 
accurate, but still simplified, formulations of the full-physics 
and chemistry. Currently the Dakota battery modeling and 
simulation system consists of over 40,000 lines of code, the 
result of over 5 years of government and private investment.

First-Principles Physics and Chemistry
Model

Dakota currently includes two first-principles Li-Ion battery 
models, one of which is a simple SPM, based on the work of 
Dr. R. E. White and others [1] A pictorial view of this simple 
SPM, shown associated with lithium cobalt oxide chemistry, is 
illustrated in Figure 1, where a single particle represents all 
particles of an electrode. This SPM is based on the full physics 
models but makes several simplifying assumptions. These 
include: a) the concentration of the lithium ions in the 
electrolyte is assumed to be constant across the cell sandwich,
b) the potential in the solution phase is assumed to be a
constant across the cell (zero volts relative to a Li/Li+ reference 
electrode in the solution phase), c) the potentials in the 
aluminum current collector and the cathode are assumed to be 
the same and depend on time, not position through the 
electrode, and d) the potentials in the anode and the copper 
current collector are assumed to be the same and depend on 
time, not on position.

Figure 1. White Single Particle Model Schematic

In addition, White’s SPM model with which we began Dakota 
contained a degradation parameter to reflect the growth of the 
Solid / Electrolyte Interface (SEI) on the anode, and loss of 
cathode active material upon cycling, and thus its performance 
decay upon cycle [2].

The SPM, which includes Butler-Volmer kinetics, contains 
both differential and algebraic equations. The differential 
equations describe how the average dimensionless 
concentration of Lithium ions in the solid phase changes over 
time.

DAKOTA MODELING APPROACH

In this section we address our approach to battery modeling by 
use of object-oriented software programming techniques, our 
improvements to and extension of the basic SPM that forms a 
core of Dakota’s modeling ability, and the additions of several 
cell degradation mechanisms important to accurately simulate 
cycle life performance.
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Object-Oriented Architecture

Object-oriented programming is ideally suited for simulating 
complex physical systems, of which, battery modeling is a 
very good example. Object-oriented programming methods 
have been used to construct the Dakota software models for 
the physical components of the battery. To illustrate the 
applicability of object-oriented programming to simulation of 
physical systems, one should compare the last sentence of the 
quote below with the description of a battery that follows.

“The idea of object-oriented programming is that functions and 
data are grouped together in an object, rather than treated 
separately. A program is a structured collection of objects that 
communicate with each other causing the internal state within 
a given object to change.” [3] (Emphasis added.) In Dakota a 
battery is an arrangement of cells that interact with each other 
causing the battery’s charge to change.

By highlighting the similarities between an object-oriented 
program and a battery, the following figure shows that an 
object-oriented programming approach is ideally suited to 
simulating physical systems (including batteries) with a 
variety of components. Figure 2 illustrates an example 
comparison of software and physical battery designs.

Figure 2 Notional Software and Physical Battery Designs

In this figure we have only shown a few of the software and 
physical objects that are employed in the Dakota battery 
model. The battery (on the right in the figure) displays a few of 
the components of a physical battery. In this example, the 
battery contains several cells arranged electrically in series-
parallel. On the left is a rough representation of the software 
battery model with various software objects, or plugins, 
representing elements of the battery that need to be modeled. 
For example, the Cell Object contains a description of its 
characteristic electrode pair as described by the Electrode Pair 
Object.  In addition we illustrate a Stochastic Object that could 
represent the physical size/shape statistics of each cell that 
might result from a realistic manufacturing process.

 “A fundamental goal of object-oriented design is to increase 
the understandability and reusability of program code by 
focusing on what an object does and how it is used, rather than

how an object is implemented.” [3] In the case of simulating 
physical systems, the design objective is to achieve one-to-one 
correspondence between physical objects and software objects. 
By doing so, a battery modeler can arrange components in 
ways that the computer programmer never intended. Even 
then, the program “just works,” because the software objects 
know how to interact with each other given the definition and 
arrangement of objects specified by the designer. In this 
fashion, one can focus on correctly understanding and 
modeling the physics and chemistry of individual processes, 
process by process, rather than the complex physical ensemble.

To achieve this level of flexibility, two design principles must 
be maintained. First, the “data” contained by software objects 
must include variables representing the state of physical 
objects. For example, each software “cell” contains a variable 
that describes its charge. Second, each software object must 
know how to propagate its state forward in time. So, for 
example, each software “cell” contains equations to calculate 
its state, including partial differential equations, if necessary.

By using this model architecture, we were able to more 
quickly add capabilities and to discover problems with the 
underlying chemistry and physics. If the model did not 
accurately simulate the behavior of a laboratory test cell, this 
fact forced the modeler to focus their efforts on the correcting 
the basic physical and chemical software elements containing 
the partial differential equations and their various parameters 
in order to get the model to match the test cell behavior.

Improving the SPM

In the Dakota modeling effort we extended the state-of-the-art 
in first-principles modeling by improving the SPM in two 
ways: by implementing an approximation to the infinite series 
solutions and by improving the film formation equations at the 
end of taper during charge.

Infinite Series Approximation

Early in the development of Dakota, we noticed a fundamental 
difference between simulations from the FPM, implemented in 
COMSOL, and the SPM, implemented in Dakota. Figure 3 and 
Figure 4 show these differences for different values of cathode 
diffusion coefficient.

The difference can be readily seen at the beginning of 
discharge where all lines (representing different diffusion 
coefficients) show differences between the FPM and SPM 
models. The SPM model lines do not all start at 4.1 V, but the 
FPM lines do all start at 4.1 V. The differences are most 
severe for lower values of the cathode’s diffusion coefficient.

Essentially we found that the simple SPM’s 2-term 
approximation for the Li+ ion concentration distribution in the 
solid phase is a limiting factor.  Thus, we needed to expand the 
SPM’s spherical diffusion equations.



For Sc << 1.0, solid phase diffusion effects are unimportant. 
For the objective of extending the temperature and rate 
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Figure 3 FPM simulation of MER cell run on COMSOL at 1
C (8 A).

Figure 4 SPM simulation of MER cell run on Dakota at 1 C
(8 A).

The Sc parameter, we will call the Solid Phase Diffusion 
Discharge Time Ratio, helps to understand the observed 
behaviors [4]. Sc is a function of applied current, particle size, 
diffusion coefficient, electrode solid phase volume fraction, 
active material thickness, and the maximum solid phase 
lithium ion concentration, as shown in the following equation.
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where

Sc = (solid phase diffusion time) / (discharge time)
I = rate [A]
R = cathode particle radius [cm]
Ds = diffusion coefficient [cm2/s]
t = cathode active material thickness [cm]
ε = cathode solid phase volume fraction [-]
Cs, max = maximum solid phase Li+ concentration

envelope, if the diffusion coefficient is low (at low 
temperatures), solid phase diffusion becomes important at 
lower current rates.

The 2-term approximation to the solid-phase diffusion 
equation becomes problematic when Sc becomes large, 
because diffusion in the solid particles becomes important. 
The 2-term approximation simply does not have enough 
fidelity to capture the physics correctly. Sc becomes large 
when the current rate is high, when the active material 
particles are large, and when the diffusion coefficient is small 
(low temperature). So, the SPM is limited to low rates and 
moderate temperatures.

The reason for the SPM limitations is that concentration 
distributions in solid phases are approximated poorly. This is 
especially at the beginning of discharge under large Sc 
conditions where the SPM fails because it over-predicts the 
surface concentration of Li+ ions.  This failure occurs because 
the two term polynomial approximation incorrectly predicts a 
“pile up” of Li+ ions at the surface of the solid phase particles. 
Incorrect prediction of the particle surface concentration 
results in low cell potential predictions as shown in the model 
comparison above.

To address the issue of using the SPM under conditions of
high Sc, we extended the SPM to include an approximation
[5], to the infinite series solution to the SPM equations.

Improving the Film Formation Model

We observed that the simple SPM film formation model had 
an undesirable characteristic, namely that the end-of-taper 
intercalation/deintercalation current on the anode often goes 
slightly negative, especially when the taper cutoff currrent is 
low. This occurs because the current density for the film 
formation reaction (a constant in the original film formation 
equations) can be higher than the total current density for the 
anode when the taper limit is small. This requires that the 
intercalation/deintercalation current density switch sign. 
Essentially, this meant that the anode is discharging at the end 
of the charge process. To resolve this issue, we heuristically 
added an additional term to the film formation equations to 
ensure that the film formation current decreases at the end of 
the taper process.

Extending the SPM to Higher Rates and
Wider Range of Temperatures

In the past, the simple SPM has been know to have difficulty 
accurately modeling cell operation at high discharge rates, e.g. 
>1C for liquid electrolyte Li-Ion chemistry or when cell 
temperatures are much lower than room temperature. Our goal 
was to significantly improve the SPM simulation accuracy at 
high rates and for a wider range of temperatures without a 
significant increase in computation time. The use of the 
infinite series approximation, as opposed to the SPM’s 2-term 
approximation, was a significant step in this process, but we 
also realized that a number of cell parameters changed under
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different discharge conditions and it would be important to 
account for those changes in the Dakota SPM.

In addition to the basic cell design parameters, like electrode 
size, loading and coating thickness and porosity; particle size; 
separator thickness and porosity, etc., there are temperature-
and rate-dependent, fundamental and necessary cell chemistry 
parameters needed to accurately predict cell behavior under a 
wider range of temperatures and high rate conditions. 
Knowledge is needed of the open circuit potentials (OCPs), the 
state of charge (SOC), diffusion coefficients and rate constants 
as a function of temperature for each of the electrodes. This 
information is chemistry and manufacturer dependent since 
different sources of base materials are often used. Some of this 
information exists in the literature, but most does not. Even 
what exists in the literature has very large differences between 
researchers, e.g. many orders of magnitude for rate constants. 
So, we recognized that we needed to develop a process for 
obtaining these data and for incorporating them into Dakota’s 
SPM. This process includes the very accurate and specialized 
measurement of OCP and SOC as a function of temperature 
for test electrodes, for example, and for determining the rate 
constants and diffusion coefficients in a systematic manner. 
However, this process also included parameter estimation of 
some of the difficult to determine cell parameters, like 
diffusion coefficients, rate constants and degradation 
parameters. Figure 5 illustrates this overall modeling process.

Figure 5 Example processes for determining cell parameters
for extending the SPM in rate and temperature.

What exactly is parameter estimation and how is it used in the 
modeling process? Parameter estimation is the method of 
estimating the values of important electrode quantities of a 
model when these parameters are difficult or impossible to 
estimate or measure with any accuracy. Examples include 
initial states of charge, solid phase diffusion coefficients, 
reaction rate constants, and loading derating factors. Early on 
we established a need for an automated method to estimate 
these parameters. Parameter estimation uses laboratory 
experimental data, compares predicted voltage vs. time curves 
to laboratory data, and adjusts key parameters to minimize

RMS error between predicted and laboratory curves. As we 
have developed this process for extending the SPM, we have 
realized that parameter estimation can significantly reduce the 
uncertainty of parameters that have many orders of magnitude 
uncertainty, like rate constants. In fact, to ensure the
charge/discharge behavior AND the thermal behavior is 
accurately modeled, we must carry out parameter estimation to 
determine the correct and appropriate rate constants. A key 
byproduct of this process is a much more accurate 
determination of some of the most illusive parameters, like rate 
constants.

As one can see in Figure 5, this process requires substantial 
cell measurements to characterize key cell parameters and 
some limited life-cycle testing in order to better determine 
degradation parameters.

Our philosophy is to accurately model the continuous physical 
and chemical changes in the cell as cycling proceeds and 
degradation occurs. By doing so, the model can predict cell 
performance even if rates and temperatures exceed nominal 
laboratory testing boundaries. This approach allows us to 
accurately simulate the life and performance of a cell over 
many thousands of cycles and many years of battery operation, 
without periodic measurements and resets of key parameters 
every few thousand cycles.

Integrating Cell Impedance Effects

Impedance is important because it affects the relationship 
between voltage and current. If the impedance is predicted 
incorrectly, the voltage during discharge will be incorrect. If 
the voltage is incorrect, we will incorrectly predict the time at 
which the cell will hit an end of discharge limit during a 
cycling regime.

Dakota incorporates the ability to set the ohmic resistance of a 
cell. This is important since the ohmic resistance of a cell 
causes a step change in voltage when switching from charge to 
discharge (and vice versa). This required us to develop 
algorithms for expressing cell impedance as a function of 
temperature that are incorporated into Dakota.

A number of factors have established the need for ohmic 
resistance of a cell, Rcell, in Dakota. First the FPM takes into 
account variation in electrolyte concentrations with time 
during operation, while the SPM in Dakota assumes constant 
electrolyte concentration. In addition, the constant electrolyte 
concentration assumption may not hold up at high rates and 
subzero temperatures, where Li+ diffusion coefficients may be 
very small and influences the cell performance.  Incorporating 
Rcell in Dakota minimizes the effects of constant concentration 
assumption. Our objective was to develop an algorithm for 
calculating Rcell that includes the ionic and electronic 
contributions from cell components (electrolyte, cathode, 
anode, separator).

There are several components to impedance including ohmic, 
interfacial, and mass and charge transfer. We needed to 
include impedance to be able to predict proper cell behavior.
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Cell impedance increases as a cell ages under the influence of 
long term cycling. It’s important to understand which 
impedance components change and why. Their components 
include (1) Ohmic, (2) Solid / Electrolyte Interface (SEI) 
layer, (3) Charge Transfer (Activation) Polarization, and (4) 
Mass Transfer (Concentration) Polarization.

Ohmic impedance includes the ionic resistances of electrolyte 
in the separator and electrodes and the electronic resistances of 
active materials, current collectors, connecting tabs at both 
electrodes, contact resistances between the active material and 
current collectors.

The SEI layer is a surface film formed between the anode and 
electrolyte interphases. The SEI is ionically conducting, 
electronically insulating, passivation film that allows Li+ 

diffusion but reduces further solvent reactions at the electrode 
surface. SEI stability is important for long-term operation. 
Also, double layer effects on the electrode/solution interface 
contribute in this region.

Charge Transfer (Activation) Polarization is related to charge 
transfer during lithium intercalation as governed by Butler-
Volmer equation, and its contributions depends on the rate-
determining process of the reactions occurring at the 
electrodes.

Mass Transfer (Concentration) Polarization is as a result of 
slow mass transfer of either the reactants or products in one of 
rate determining electrodes (Fick’s law). The dominant mode 
of mass transfer is diffusion in lithium ion batteries, primarily 
due to slow lithium ion diffusion rates in the electrodes during 
intercalation/de-intercalation process.

Figure 6 illustrates the contribution of the various impedance 
sources and show how they affect cell behavior. Charge and 
mass transfer polarization, which have a longer time constant, 
are important if one is to simulate long-duration performance 
and life.

Figure 6 Impedance contribution schematic

Ohmic cell impedance, which consists of anode, cathode and 
separator resistance, can be both calculated and measured. In 
addition, we have used parameter estimation to refine cell 
impedance.

We investigated the variation of mass and charge transfer 
polarization of the electrode/cell impedance components with 
temperature and rate for lithium nickel cobalt oxide cells over 
a temperature range (0-30°C) and rates (2C, C, C/2, C/5, and 
C/20). The mass and charge transfer polarization impedance 
components were calculated using an FPM under given 
operating conditions (temperature, rate) for this chemistry, 
knowing the OCP-SOC as well as electrolyte conductivity vs. 
concentration correlation.

The mass transfer impedance was extracted from solution 
phase potentials in the cathode, separator and anode regions at 
different DOD (or SOC). The charge transfer impedance was 
calculated based on the FPM exchange current results 
extracted for the anode and cathode at different DOD (or 
SOC).

Analysis was completed for temperatures 20, 10 and 0°C. As 
expected, the total impedance increased with decrease in 
temperature and to a much smaller extent with an increase in 
the discharge rate.

Incorporating New Cell Degradation
Mechanisms

We have incorporated two new degradation mechanisms into 
the SPM in Dakota that can help us to accurately simulate cell 
life and performance. These new degradation mechanisms 
include electrolyte oxidation (which forms a cathode external 
film) and loss of active anode material (the simple SPM 
already included anode film formation and cathode active 
material loss).

Figure 7 illustrates the envelope of possible degradation 
mechanisms for Li-Ion cells. The red highlighted cells are all 
the degradation mechanisms currently incorporated into 
Dakota.  The degradation mechanisms we selected offered the 
biggest benefit to the battery operation conditions of interest to 
our sponsors, i.e. long duration, LEO satellite
charge/discharge cycling with pulse discharge characteristics. 
A number of these mechanisms are relevant to Li-Ion cell 
failure, and therefore could be of interest for other modeling 
applications, e.g. EV battery modeling and simulation.

The model formulation and equations for the electrolyte 
oxidation, which forms an external film on the cathode 
particle, is based on the same treatment as that of the anode 
film formation (SEI layer growth) in the original SPM. The 
oxidation of the electrolyte happens during charging of the Li-
Ion cells. Additionally, there is an internal film formation on 
the cathode resulting from the reaction of the cathode particles 
with the electrolyte, which is also formulated in a similar 
manner.
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Figure 7 Cell degradation matrix illustrating degradation
mechanisms and corresponding modes of their acceleration.

Multi-cell Battery Modeling

Dakota can simulate a battery with multiple cells in various 
string relationships.  A series of cells can also have a shunt 
resistor connected to it in parallel. The interactions among the 
cells of the battery are determined by utilizing the physics of 
series and parallel connections: all components connected in 
series have the same current and all components connected in 
parallel have the same potential. For example, Dakota can 
quickly create MpNs batteries (where M is the number of 
parallel cells in a virtual cell, and N is the number of virtual 
cells in a string).

In addition, Dakota can represent a Battery Control Board 
(BCB) that controls how much current is delivered to the 
battery. Shunt resistors can be connected in parallel with 
series-cells, and serve to draw current away from the series 
cells during taper charging.

Figure 8 illustrates a simple battery with 3 cells in parallel, in 
a “virtual” cell arrangement with a BCB. We can combine 
these virtual cells in a series connection, called a “string”
(3p1s), a configuration of interest to one of our sponsors. 
Additionally, each virtual-cell has a shunt resistor connected 
to it in parallel, creating a “virtual-cell-pack.”

Figure 8. Schematic of 3p1s system circuit.

Creating a 3p8s battery required adding additional virtual-cell-
packs to the existing 3p1s battery. Each virtual-cell in the 
battery has three cells, and each virtual-cell is connected in 
parallel with a shunt, creating eight virtual-cell-packs in series.

Figure 9 shows a simple circuit diagram of the 3p8s battery. 
The virtual-cell-packs are the sets of 3 cells and a shunt. The 8 
virtual-cell-packs are connected in series, with a source (or 
load) connected to the series. There are connections from the 
shunts to the battery control board, which allow the battery 
control board to monitor the potential of the virtual-cell-pack, 
and to control the resistance of the shunts.

Figure 9: Schematic of 3p8s system circuit

Later, we will show some results of multi-cell battery 
modeling when the cells have slight imbalances.

MODEL VALIDATION AND
SIMULATIONS

Validation Strategy

The strategy for validating the Dakota tool was multifold using 
a Full Physics Model (FPM), laboratory test data, and published 
results. This strategy included the incorporation of three 
chemistries into Dakota, namely, (1) Doyle-Newman [6] (D-N) 
- LiyMn2O4, LixC6, (2) US government (USG) - LixCoO2, LixC6, 
and (3) the Lithion-manufactured Mars Exploration Rover
(MER) cell - LiNixCo(1-x)O2, LixC6 chemistry. In addition, we 
incorporated these chemistries into a FPM using COMSOL. 
This enabled us to validate the SPM Dakota against D-N 
published results, MER LEO cycling data, and COMSOL full-
physics model results for all three chemistries.

Charge/Discharge Behavior Validation

In this section we display the validation of Dakota with 
respect to a Fortran-based SPM, published results and 
laboratory test data.

One of the first things we did was to verify that the SPM in 
Dakota performed identically to the SPM provided by Dr. 
White. The chemistry in White’s SPM was based on a USG 
cell, i.e., with a lithiated cobalt oxide cathode and MCMB 
graphitic anode.  The objective of this comparison was to 
ensure that the predictions from the Dakota model are 
comparable to that of White’s SPM model, before we made 
further modifications and validations against experimental or 
published data.



Figure 12 is a comparison of the SPM Dakota with actual data 
from a MER Li-Ion cell with the NiCoO2/MCMB chemistry. 
A cell designated YL094, and the SPM Dakota results were 
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Figure 10 illustrates the typical USG cell discharge profile 
from Dakota and a Fortran SPM at room temperature at a 
current of 1 A (current density of 9.5 mA/cm2), using the same 
set of cell parameters.

Figure 11 illustrates the validation of Dakota’s
charge/discharge behavior using Doyle-Newman (LiyMn2O4, 
LixC6,) chemistry published results that included FPM 
simulations and laboratory test data. The reason for choosing 
this chemistry was fivefold: (1) existing literature was 
available and is well known to community, (2) all cell 
parameters are known or “easily” calculated, (3) OCPs were 
provided in the literature, (4) initial states of charge were 
provided in the literature, and finally (5) the Full-Physics 
Model (FPM) is available in Fortran and COMSOL.

Figure 10 Typical USG cell discharge curves simulated from
Dakota and Fortran SPM

Figure 11 shows the comparison between the published results
of Doyle-Newman with both the SPM Dakota and the FPM as
simulated in COMSOL.

Figure 11 Comparison of Doyle-Newman results with SPM
Dakota and RFM COMSOL predictions for 0.5C

compared.  The discharge rate was 1.6 A, which is C/5 based 
on the rated capacity of this cell. The YL094 cell was selected 
since its capacity was at the average capacity for the YL and 
YF MER cells groups.

These data show that Dakota performs as expected with 
respect to a Fortran-based SPM code and is very comparable 
to a FPM and experimental test data for two completely 
different Li-Ion chemistries.

Figure 12 MER cell YL094 100% discharge profile Dakota
validation.

Cell Cycling Behavior Validation

A comparison of a Dakota simulation and the cycling of a 
MER cell for a Low Earth Orbit (LEO) protocol at 20°C is 
shown in Figure 13. The voltage and current outputs from 
laboratory test data are compared with a Dakota simulation. 
The protocol was 30% DOD (4A for initial charge to 3.95 V 
followed by taper for a total of 60 minutes and 6A discharge 
for 0.5 hours. The voltage comparison is shown in the top 
curves.

Figure 13 MER cell YF265 LEO cycling Dakota validation

As one can see in Figure 13, the Dakota simulation almost
exactly tracks the laboratory test data.
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Multi-cell Battery Simulations

In this section, we discuss the simulation of an unbalanced 
3p1s virtual cell pack and an unbalanced 3p8s battery.

For the 3p1s, “unbalanced,” means that the initial SOC of one 
of the cells in the virtual-cell was much lower than the other 
two cells. The differences in SOCs of the cells were achieved 
by adjusting the values of theta (the ratio between the average 
solid phase concentration of the lithium ions in the solid phase 
of the electrode and the maximum concentration of lithium 
ions in the active material) of the electrode for the cell in 
question. By adjusting these values (essentially moving around 
ions for the initial condition), we could achieve different states 
of charge for different cells. In addition, the active material 
loadings of each cell were randomized to be slightly different, 
e.g. within ±10%. However, the interactions between the cells 
are mostly defined by their initial SOC.

Figure 14: Simulation of an unbalanced virtual cell at 100%
DOD

In a virtual-cell with one cell (Cell 1) starting at a lower SOC 
than the other two cells (Cells 2 and 3), as shown in Figure 14, 
the cells with the higher SOC can discharge into the cell with 
the lower SOC, if the imbalance is extreme (as shown above). 
Essentially, Cell 1 requires more current than delivered by the 
BCB to reach a potential equal to the other cells in the parallel 
string (Cells 2 and 3). Cells 2 and 3 ultimately deliver the extra 
current that Cell 1 needed.

As the charge progresses in the simulation, Cell 1 needs less 
current to keep its potential the same as Cells 2 and 3. After 
about 2700 s, the cells with initially higher SOCs (Cells 2 and
3) begin to approach full charge, thereby requiring less
current. The cell with initially lower SOC (Cell 1) then 
absorbs additional current as the virtual cell pack approaches 
taper (at about 4800 s). We see that the current through each 
cell decreases and the current through the shunt increases 
during taper mode.

One value of a good physics-based model is that it helps you 
to understand the physics better. The cell interaction model

that we have developed for Dakota has already done that. We 
note that the interaction model was developed simply and 
entirely based upon the physics for parallel and series circuit 
components.

In the case of the 3p8s simulations, “unbalanced” means that 
loading has been varied slight (by no more than ±10%). The 
initial values of thetas for the cells in the 3p8s battery 
simulation were all identical, meaning that all the cells had the 
same SOC at the beginning of the simulation. The initial theta 
value for all anodes was: 0.640587. The initial theta value for 
all cathodes was: 0.653898. These values were kept identical 
to prevent the possibility of an unbalanced cell-pack impeding 
the progress of the whole simulation.

The BCB for the 3p8s battery controls the resistance of the 
shunts to keep the cell voltage at the desired limit during taper 
charging. The potential and current settings of this BCB were:

 Potential Charge Limit: 4.1 Volts
 Potential Discharge Limit: 3.0 Volts
 Charge Current: 12.0 Amperes
 Taper Limit: 0.15 Amperes
 Discharge Current: -12.0 Amperes

Because degradation was not included in this simulation, the 
behavior of the change in potential of the string and 
distribution of current within each virtual-cell-pack were 
identical throughout the simulation. Each virtual-cell-pack is 
allowed to be at a different level of potential, so there were 
some virtual-cell-packs that were at higher or lower potentials 
during charge and discharge than the others, as seen in Figure 
15 and Figure 16.

Figure 15: Potentials of Virtual-Cell-Packs during one full
cycle

Since each virtual-cell consists of cells of different loadings, the
potentials of the virtual-cell-packs were different. These
differences are most apparent during the beginning of charge,
and the end of discharge. Although the virtual-cell-packs do not
go into taper mode at the same times, they do exit taper mode
simultaneously as shown in Figure 15 and Figure 16.
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Figure 16: Potentials of Virtual-Cell-Pack during tapering.

Although the potentials of each virtual-cell-pack could be
different at any given time, the behavior of the shunt resistor is
always related to the behavior of its virtual-cell-pack. The
resistance of the shunt should be infinite (either very large or
open circuit) while the cell is charging or discharging, then
some finite value during tapering to allow current to be directed
away from the cells as seen in Figure 17.

Figure 17 Potential of Virtual-Cell-Pack #3 and Resistance
of Shunt #3 for one cycle

There are a number of positive results from this 3p8s battery 
simulation. First, the simulation ran to 5667 cycles, which is 
about 3 years of simulated time, until it ended due to the 
output file reaching the Windows file system limit of 4 
gigabytes. All indications show that the simulation could have 
run forever if not for this computer system limitation. In the 
future, the output file(s) can be segmented to avoid this issue. 
Without a number of software and algorithm optimizations 
that we have already implemented, this early simulation ran 
about 160 times faster than real time on a personal computer. 
With algorithm optimization, we can expect a 10-year 
simulation of a 24-cell battery to take a few days (real time) 
on a personal computer. As computer capabilities advance, 
this time will drop. The implication of this capability in

Dakota is that complex battery operation scenario trade studies 
can be conducted in a reasonable period of time for battery and 
power systems engineers. This simulation performance is 
impossible with full physics models running on finite element 
codes.

Validation of the SPM Extension in Rate
and Temperature

In this section we discuss some of the results of the validation 
of the extension of the Dakota SPM in rate and temperature. 
While there is still more validation and model refinement 
work to be done here, we have made significant progress.

We began the validation of the model using a 10-Ah capacity 
MER cell. Laboratory data for this cell consisted of 100%
DOD and LEO cycling at different charge and discharge rates 
(C/20 to 1.5C) and at different temperatures (0° to 30°C). To 
begin the validation process, we compared the Dakota 
predictions with cell test data, to understand performance. 
Then we used results of the comparisons to correct and/or 
improve the physics of the model. This often required 
parameter estimation, which can be done automatically in 
Dakota, to refine some of the more uncertain cell or 
fundamental parameters. We began with the rate validation 
followed by the temperature validation.

Figure 18 shows the results of this validation process for 10 A 
discharge curves (1C) at various temperatures. The blue lines 
represent simulation data, while the red lines display the 
laboratory data.

Figure 18 Comparison of predicted and lab discharge curves
of 10 A at various temperatures

We see that the correct cell capacity is predicted at all 
temperatures at 1C. To achieve the capacity agreement 
observed in Figure 18, we performed parameter estimation on 
rate constants and diffusion coefficients at every rate and 
temperature. We believe that some of this parameter 
estimation may be unnecessary at higher rates if we can 
include electrolyte impedance in the SPM. This is an area for 
future improvement.

Figure 19 illustrates (for the most-challenging temperature 
only, 0°C) that we predict the correct cell capacity at all rates 
as well.
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Figure 19 YF298 predicted and lab discharge curves
comparisons at 0°C

Long-duration Cycling Behavior
Validation

In this section we discuss the validation of the Dakota 
degradation mechanisms by comparing long-duration 
laboratory cell LEO cycling data with Dakota simulations. We 
also compare long-duration simulations with and without 
operation capacity measurements in order to determine their 
potential impact. Finally, we describe an experiment where we 
attempt to predict the behavior of a cell after 7 years of cycling 
with only a year and a half of cycling data.

The approach to validating the new degradation models was to 
compare long-duration simulations that included the new 
degradation models with the long duration LEO cycling lab 
data for MER cell chemistry. We chose two sets of laboratory 
data. One was for a cell (YF265) that was cycled at 30% DOD 
at a temperature of 23°C and had around 23,000 cycles (about 
4 years) on it and the other was for a cell that was cycled at 
about 15% DOD at 23°C for 41,100 cycles (more than 7 
years).

Cycling Protocol

Our first step was to create a cycling protocol simulator, or 
cycler, in Dakota that mimics the operation a cell exactly as 
cell YF265 had been operated in the laboratory. This cycler 
allowed us to accurately compare data from the lab and the 
simulation to correctly determine the degradation mechanism 
parameters. Figure 20 and Figure 21 describe the cyclers used 
in the simulation of the YF265 cell. Figure 21 shows the 
cycles after 500 LEO cycles.

Part 1 describes the initial cycling of the cell that starts with two
full 100% DOD discharges before the LEO cycling began. Part
2 describes the protocol around cycle 500 when the op-caps
were carried out along with various other measurements that

include DC impedance measurements by injecting 
current pulses of C/2 for 60 seconds at different states of 
charges.

Figure 20 MER cell YF265 LEO cycling protocol - part 1.

Figure 21 MER cell YF265 LEO cycling protocol - part 2.

Degradation Mechanism Validation

In this validation, we added degradation mechanisms 
sequentially: anode film formation, cathode degradation, 
anode degradation, and cathode film formation. We then used 
the results to correct and/or improve the physics, if needed.

Our detailed approach was to use parameter estimation to 
match the first 20 cycles of lab data without degradation 
mechanisms in place. Then we carried out sensitivity studies 
on the 4 degradation mechanisms in Dakota. Then, using 
combinations of degradation mechanisms, we attempted to 
obtain better fits to laboratory data. All the while, we tracked 
film thickness as a percentage of particle radii and active 
material loss as a percentage of initial material in order to 
make sure we were still modeling physically representative 
systems.

The four degradation mechanisms are:

 Anode external film formation
 Cathode external film formation
 Anode active material loss
 Cathode active material loss
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In this process, we learned that it is important to include all 4 
degradation mechanisms, because they all interact to produce 
the overall degradation result. Figure 22 demonstrates that 
Dakota can accurately represent laboratory cell degradation 
behavior using its physics and chemistry-based model.

Figure 22 Best fit of degradation parameters for YF265 long
duration cycling data

In Figure 22, it is noteworthy that we are predicting the 
magnitude of the cell “recovery” after op-caps (operation 
capacity checks) quite well, which is a testament to the 
performance of an infinite series approximation model that 
does a better job of predicting the Li+ concentration at the 
surface of the particles.

Effect of Op-Caps in Laboratory Testing

Because of questions about the impact of op-caps to potential 
cell life testing, we carried out a simulation with identical cell 
and degradation parameters as shown in Figure 22, but 
without the op-caps occurring every 500 cycles. The results 
are shown in Figure 23.

Figure 23 YF265 EODV vs. cycle simulation comparison
with and without op-caps

These data suggest that laboratory testing with op-caps may 
have a detrimental influence on overall measured life and, 
therefore, may result in conservative estimates of LEO cycle 
life. For YF265, it could mean that, in actual LEO operations,

without op-caps, this cell may have up to 25% more life cycles 
than estimated by laboratory data where op-caps are done.

The increased cycle life is due to the fact that op-cap cycles are
performed over 100% DOD cycles, which is effectively
equivalent to multiple shallow DOD cycles in terms of
degradation effects. The results in Figure 23 illustrate the power
of a fast physics-based battery simulation system, like Dakota,
to study the implications of laboratory cycling regimes as
compared to actual operations.

EODV Prediction Experiment

We also had one laboratory data set for a 7 Ah cell of the same 
MER chemistry that was cycled at about 15% DOD at 23°C 
for 41,100 cycles (more than 7 years). In addition, this data set 
had no op-caps. With this set of data we tried an experiment 
with Dakota to see how well Dakota could predict the end of 
discharge voltage (EODV) at the end of the cycling data. The 
comparison of laboratory EODV data to Dakota predictions is 
shown in Figure 24.

This cell was not cycled continuously, though there were 
rarely more than a few days between cycling tests. There were 
two instances where there was a 3–4 month span of time 
between cycling. This cell was cycled without op-caps,
however, at the end of each cycling span, the cell was fully 
charged before storage that was not included in the simulation, 
hence, the simulation cycles begin with a charge only cycle 
that was taper-limited followed by a discharge (deeper than
15% DOD), which brings the cell to a lower EODV than 
actually observed in the lab data. At the beginning of every set 
of continuous cycling data, the first cycle was a charge only 
cycle that was taper-limited. Then the remaining cycles were 
timed cycles (1 hour charge, 30 minute discharge). There were 
also two short instances where the cell cycling schedule was 
different from the intended protocol, and it was operated at 
19.3% DOD, once at around 4,900 cycles and again around 
29,000 cycles. These “mistake” cycles were accounted for in 
Dakota. The roller coaster appearance of the lab data may be 
attributable to seasonal variations in the “room” temperature.

Figure 24 Dakota simulation vs. lab data for cell Y702
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Overall the Dakota simulation in Figure 24 tracks laboratory
data well. There are some differences. First, the simulation
starts with a slightly lower EODV for the first 1500 cycles,
and the initial slope of EODV decay is less than the slope of
the actual data. Second, as discussed above, the lower green
diamonds of EODV from the simulation seen in Figure 24
occurred after the first discharge cycle of each regimen since
the simulation had not accounted for the full charging
sequence before cell storage, hence the EODV briefly drops
below the lab data. Third, the simulation nicely follows the
EODV when the cell was cycled, at 19.3% DOD beginning
with cycle 5000. Fourth, from 3000 to 30,000 cycles, the
Dakota simulation matches the laboratory EODV very well.

In Figure 25, we present the same data without the 19.2%DOD 
points. We created a spline curve to match the simulation and 
then stretched it to get a quasi-fit to the lab data near the end of 
its cycling. Then we calculated the time at which an EODV of 
3.65V was reached for both the simulation and the stretched 
spline fit of the actual lab data.  The result was that the 
simulation underestimated this time by about 12%. 

Figure 25 Comparison of time to reach an EODV of 3.65 V
for a Dakota simulation and lab data fit for cell Y702

Our approach above was to use initial cycling data (first 8,000 
cycles) to determine degradation parameters to predict the 
performance of the cell many years into the future (41,000 
cycles). It is useful to consider the conditions under which we 
expect this approach to be successful.

Most Li-ion cells are made with excess anode material (the 
cells are “cathode limited”) to avoid Li plating on the anode 
during cycling. Cells are designed with enough excess anode 
material to avoid Li plating throughout the expected lifetime 
of the cell. In fact, end-of-life for a cell can be defined as the 
moment at which the limiting electrode switches from the 
cathode to the anode.

This design reality provides some promise that it will be 
possible to determine cell degradation parameters using 
parameter estimation techniques on the first few thousand 
cycles of laboratory data. In a well-functioning cell, the

cathode is the limiting electrode, therefore parameter 
estimation will be most sensitive to the degradation of the 
cathode during the first several thousand cycles in the 
laboratory. With cathode degradation parameters in hand (and 
to a lesser extent, with anode degradation parameters in hand), 
it should be possible to predict the behavior of the cell over its 
lifetime with an acceptable level of accuracy. The successful 
predictions shown above, especially with cell Y702, indicate 
that this approach has merit and should be pursued further.

10-year, Life-cycle Simulations

In this section, we simulate a long duration LEO operation, i.e. 
>10 years, of a MER chemistry cell in Dakota. Our approach 
was to assume a single cell with YF265 physical 
characteristics, initial cell parameters (θs and LDFs), and a 
representative set of degradation parameters to enable a 10 
year simulation. Simulations were run and performance and 
life compared for two DODs, namely 30% and 40%. In 
addition, we compared the charge-discharge curves at the 
beginning of life and near the end of life.

Figure 26 shows EODV for a cell with degradation parameters 
that were reduced relative to the degradation parameters from 
Figure 22. Note that the top two dashed lines represent the cell 
“recovery” after op-caps. The solid line represents EODVs for 
LEO cycles. The dashed line at 3.0 V represents op-caps 
EODVs.

Figure 26 Representative 10-year simulation of a MER cell
operated at 30% DOD at 20°C

We benchmarked the runtime required for the above 
simulation and found that it required about 4 hours clock time 
on a desktop computer (Intel Core2Quad Q9550 @2.83 GHz). 
We estimated that for a 24-cell battery, it would require about 
4 days for simulation on the same computer. Future computer 
and software improvements can significantly reduce this time. 
The implications of these runtimes is that real batteries can be 
simulated relatively quickly allowing engineers to carry out 
numerous trade studies during satellite system design.

Figure 27 compares charge-discharge processes at the 100th 

cycle (near beginning of life) and at the 50,100th cycle at 9
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years. Expected trends are observed: EODV is much lower at 
9 years, and the aged cell reaches the charge limit faster.

Figure 27 Comparison of early and late cycle discharge
behavior for 10-year simulation

Figure 28 shows a comparison between 30% DOD and 40%
DOD, all other things being equal. As expected, the 40% DOD
simulation degrades the cell faster, demonstrating that Dakota is
correctly predicting degradation trends with DOD.

Figure 28 Comparison on 30% and 40% DOD for
representative 10-year simulations

SUMMARY

A fast, accurate and versatile first-principles-based battery 
simulation and modeling system has been developed that can 
accurately forecast the behavior of Li-Ion cells and batteries 
after years of life cycle operation. This system has been 
validated on several different Li-Ion chemistries and is 
applicable to many more chemistries after their important cell 
parameters are incorporated into the tool. This tool can 
facilitate and reduce the investment required in dollars and 
time for the qualification of new Li-Ion chemistries to be 
incorporated into new electric vehicles. In addition, this new 
tool can assist vehicle engineers in doing complex trade studies 
to select optimum battery operation parameters and use 
scenarios.
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